How Long Before Ultracapacitors Overtake Batteries?


/ published 1 month ago

How Long Before Ultracapacitors Overtake Batteries?

Batteries need time to charge and discharge energy. Think of it as the time it takes for a dam to fill with rain during the rain, and then slowly drain. On the other hand, ultracapacitors, can store charge and discharge rapidly. It is like routinely opening the floodgates in a dam as it rapidly refills with rain

Ultracapacitors are rapidly emerging and increasingly applied technology. They are capable of storing and discharging energy very quickly and effectively. Ultracapacitors are considered one of the top emerging technologies that will change our life and world in the next 10 to 15 years. But how far are we from that?

They are being utilized in thousands of different applications. They complement a primary energy source which cannot repeatedly provide quick burst of power. For example, an internal combustion engine, fuel cells, or battery. The future looks bright, but how far are we from ultracapacitors becoming the standard?

What is the difference between a capacitor and a battery?

It is best that we start this section with an analogy. Batteries need time to charge and discharge energy. Think of it as the time it takes for a dam to fill with rain during the rain, and then slowly drain. On the other hand, ultracapacitors, can store charge and discharge rapidly. It is like routinely opening the floodgates in a dam as it rapidly refills with rain.

With that in mind, here are the five main differences between the two.

Number one, definition of the two items. Batteries store their potential energy in the form of chemical reactions before converting it into electrical energy.  Capacitors, on the other hand, store potential energy in an electric field. Their voltage is variable and proportional to the amount of electrical charge stored on the plates.

The second difference is in the way of application. Batteries can store a larger amount of electrical charge. An ultracapacitor, however, cannot store large amounts of energy. They can handle high voltage applications and they are ideal for frequent uses.

The charge and discharge rate is the next difference. The rate of capacitors is much faster than the one of batteries. That is because the capacitor stores the energy directly onto the plates.

Both these devices can store electrical energy. But they do it in a different way. Batteries store energy in the form of chemical energy. Capacitors store electrical energy in a magnetic field.

Last, but not least, is the polarity of capacitors and batteries. Polarity of the electronic circuit must be reverse while charging a battery. It must be the same as it is supposed to be while using in the case of a capacitor. Batteries maintain a constant voltage flow across the terminals.

Where can Ultracapacitors be useful?

Here are a couple of situations where ultracapacitors have found their usage. They are quite beneficial and utilized in these situations.

- They can be used to harvest power from regenerative braking systems and release power to help hybrid buses accelerate

- They can be used in blade pitch systems to increase reliability and stability to the energy grid

- Semi-trucks in cold weather can drain energy from capacitors when batteries are drained from repetitive starting or in-cab electric load

- We can use ultracapacitors to capture energy and provide burst power to assist in lifting operations

- Provide cranking power and voltage stabilization in start/stop systems and peak power for key automotive applications

- Provide energy to data centers between power failures and initiation of backup power systems

- Capture energy from regenerative braking systems and release power to assist in train acceleration

- Open aircraft doors in the event of power failure

- Provide energy storage for firming the output of renewable installations and increasing grid stability

How long before they overtake batteries?

Elon Musk is one of the great minds of our generation. When he first came to California, he wanted to pursue a PhD at Stanford studying ultracapacitors. He ended up becoming an internet entrepreneur instead. But his love for the technology stayed.

In February 2019, Tesla bought Maxwell, a company known for making ultracapacitors. They have found usage in the auto industry. Maxwell has customers like General Motors, Lamborghini, and Volvo. They use ultracapacitors to absorb energy when braking and then releasing when the car accelerates.

While fast charge and discharge make capacitors better than batteries, they have their disadvantages. The biggest one is the limitation. The total amount of energy capacitors store is just a fraction of what batteries store. To run electric cars on ultracapacitors, for example, you need many devices. That would make the car too heavy to run efficiently.

But the technology is just in its beginning. After a couple of years, we might see ultracapacitors replacing batteries. This is the time to invest knowledge and time in them.

From Around the Web

Related Videos


CSCL Globe is the largest container ship in the world. It is owned and operated by China Shipping Container Lines. It is the first of a class of five ships designed for Asia-...

  • 79
  • 2 days ago
  • Not Rated
venn diagram problem solving
youtube icon

A Venn diagram is a diagram showing all possible logical relations between a finite collection of different sets. They depict elements as points in the plane, and sets as reg...

  • 199
  • 2 weeks ago
  • Not Rated
deep ocean submarine
youtube icon
Nature +1

Greg Foot takes you on a scientific adventure diving down into the deep dark ocean. The documentary starts on the deck of the Baseline Explorer, and from there you go into th...

  • 236
  • 2 weeks ago
  • Not Rated

Quantum computers perform calculations based on the probability of an object’s state before it is measured, instead of just 1s or 0s. They have the potential to process exponen...

  • 403
  • 1 month ago
  • Not Rated
Related Articles
Lucy, or with its official name BMP 37093, was discovered in 2004. Astronomers nicknamed the space diamond star after th...
  • 1,956
  • 10 months ago
The name of the mission stands for “Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport”
  • 1,170
  • 1 year ago
Such event would require the same amount of energy stored in the momentum of everything on our rotating planet. And ther...
  • 2,698
  • 1 year ago
One average lightning bolt can release enough energy to operate a 100-watt light bulb for more than three months straigh...
  • 1,597
  • 1 year ago